pFUSE-hlgG4-Fc2

For research use only
 Version 20K05-MM

PRODUCT INFORMATION

Content:

- $20 \mu \mathrm{~g}$ of pFUSE-hIgG4-Fc2 (IL2ss) plasmid provided as lyophilized DNA
- 1 ml of Zeocin ${ }^{\mathrm{TM}}(100 \mathrm{mg} / \mathrm{ml})$

Storage and Stability:

- Product is shipped at room temperature.
- Lyophilized DNA should be stored at $-20^{\circ} \mathrm{C}$ and is stable 3 months.
- Resuspended DNA should be stored at $-20^{\circ} \mathrm{C}$ and is stable up to 1 year.
- Store Zeocin ${ }^{\mathrm{TM}}$ at $4^{\circ} \mathrm{C}$ or at $-20^{\circ} \mathrm{C}$. The expiry date is specified on the product label.
Quality control:
- Plasmid construct has been confirmed by restriction analysis and sequencing.
- Plasmid DNA was purified by ion exchange chromatography and lyophilized.

GENERAL PRODUCT USE

pFUSE-Fc is a family of plasmid developed to facilitate the construction of Fc -fusion proteins by fusing the effector region of a protein to the Fc region of an immunoglobulin $\mathrm{G}(\operatorname{IgG})$.
pFUSE-Fc plasmids yield high levels of Fc-fusion proteins. The level of expression is usually in the $\mu \mathrm{g} / \mathrm{mL}$ range. They can be transfected in a variety of mammalian cells, including myeloma cell lines, CHO cells, monkey COS cells and human embryonic kidney (HEK)293 cells, cells that are commonly used in protein purification systems.
pFUSE-Fc2 (IL2ss) plasmids allow the secretion of Fc -Fusion proteins. They contain the IL2 signal sequence (IL2ss) for the generation of Fc -Fusion proteins derived from proteins that are not naturally secreted. As Fc-Fusion proteins are secreted, they can be easily detected in the supernatant of $\mathrm{pFUSE}-\mathrm{Fc}$-transfected cells by SDS-PAGE. Furthermore, functional domains can be identified by immunoblotting and ligand blotting.
Fc -Fusion proteins can be easily purified by single-step protein A or protein G affinity chromatography.
InvivoGen provides $\mathrm{pFUSE}-\mathrm{Fc}$ vectors featuring Fc regions from different species and isotypes. In humans, there are four isotypes: $\operatorname{IgG} 1, \operatorname{IgG} 2$, $\operatorname{IgG} 3$ and $\operatorname{IgG} 4$. The Fc region mediates effector functions, such as antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). IgG isoforms exert different levels of effector functions increasing in the order of $\mathrm{IgG} 4<\mathrm{IgG} 2<\mathrm{IgG} 1 \leq \mathrm{IgG} 3$.

PLASMID FEATURES

- hIgG4-Fc (human): The Fc region comprises the CH2 and CH3 domains of the IgG heavy chain and the hinge region. The hinge serves as a flexible spacer between the two parts of the Fc -fusion protein, allowing each part of the molecule to function independently.
Human IgG4 dispays low ADCC and no CDC, and therefore is the most suitable for diagnostic imaging or blocking molecular interactions1.
- hEF1-HTLV prom is a composite promoter comprising the Elongation Factor- $1 \alpha(\mathrm{EF}-1 \alpha)$ core promoter ${ }^{2}$ and the R segment and part of the U5 sequence (R-U5') of the Human T-Cell Leukemia Virus (HTLV) Type 1 Long Terminal Repeat. The EF-1 α promoter exhibits a strong activity and yields long lasting expression of a transgene in vivo. The R-U5' has been coupled to the EF-1 α core promoter to enhance stability of RNA.
- IL2 ss: The IL2 signal sequence contains 20 amino acids and share common characteristics with signal peptides of other secretory proteins. The intracellular cleavage of the IL2 signal peptide occurs after Ser20 and leads to the secretion of the antigenic protein.
- MCS: The multiple cloning site contains several restriction sites that are compatible with many other enzymes, thus facilitating cloning.
- SV40 pAn: the Simian Virus 40 late polyadenylation signal enables efficient cleavage and polyadenylation reactions resulting in high levels of steady-state mRNA ${ }^{4}$.
- ori: a minimal E. coli origin of replication to limit vector size, but with the same activity as the longer Ori.
- CMV enh / hFerL prom: This composite promoter combines the human cytomegalovirus immediate-early gene 1 enhancer and the core promoter of the human ferritin light chain gene. This ubiquitous promoter drives the expression of the Zeocin ${ }^{\text {"" }}$-resistance gene in mammalian cells.
- EM2KC is a bacterial promoter that enables the constitutive expression of the antibiotic resistance gene in E. coli. EM2KC is located within an intron and is spliced out in mammalian cells.
- Zeo: Resistance to Zeocin" is conferred by the Sh ble gene from Streptoalloteichus hindustanus The same resistance gene confers selection in both mammalian cells and E. coli.
- BGlo pAn: The human beta-globin 3'UTR and polyadenylation sequence allows efficient arrest of the transgene transcription ${ }^{5}$.

1. Kim SJ. et al., 2005. Antibody engineering for the development of therapeutic antibodies. Mol. Cells. 20(1):17-29.
2. Kim DW et al. 1990. Use of the human elongation factor 1 alpha promoter as a versatile and efficient expression system. 91(2):217-23.
3. Takebe Y. et al. 1988. SR alpha promoter: an efficient and versatile mammalian cDNA expression system composed of the simian virus 40 early promoter and the R-U5 segment of human T-cell leukemia virus type 1 long terminal repeat. Mol Cell Biol. 8(1):466-72. 4. Carswell S. \& Alwine JC. 1989. Efficiency of utilization of the simian virus 40 late polyadenylation site: effects of upstream sequences. Mol Cell Biol. 9(10):4248-58.
4. Yu J. \& Russell JE. 2001. Structural and functional analysis of an mRNP complex that mediates the high stability of human beta-globin mRNA. Mol Cell Biol. 21(17):5879-88.

METHODS

Plasmid resuspension

Quickly spin the tube containing the lyophilized plasmid to pellet the DNA. To obtain a plasmid solution at $1 \mu \mathrm{~g} / \mu$ l, resuspend the DNA in $20 \mu \mathrm{l}$ of sterile $\mathrm{H}_{2} \mathrm{O}$. Store resuspended plasmid at $-20^{\circ} \mathrm{C}$.

Plasmid amplification and cloning

Plasmid amplification and cloning can be performed in E. coli GT116 or in other commonly used laboratory E. coli strains, such as DH5 α.

Zeocin ${ }^{\text {TM }}$ usage

This antibiotic can be used for E. coli at $25 \mu \mathrm{~g} / \mathrm{ml}$ in liquid or solid media and at $50-200 \mu \mathrm{~g} / \mathrm{ml}$ to select Zeocin ${ }^{\mathrm{TM}}$-resistant mammalian cells.

RELATED PRODUCTS

Catalog Code

PvuI (11)

Sgfi (11)
1 GGATCTGCGATCGCTCCGGTGCCCGTCAGTGGGCAGAGCGCACATCGCCCACAGTCCCCGAGAAGTTGGGGGGAGGGGTCGGCAATTGAACGGGTGCCTA
101 GAGAAGGTGGCGCGGGGTAAACTGGGAAAGTGATGTCGTGTACTGGCTCCGCCTTTTTCCCGAGGGTGGGGGGAGAACCGTATATAAGTGCAGTAGTCGCC

601 TTGCACTAAGTCTTGCACTTGTCACGAATTCGATATCGGCCATGGTTAGATCTCCCCCATGCCCATCATGCCCAGCACCTGAGTTCCTGGGGGGACCATC
 BspHI [m] (736) Bsu36I (754)
701 AGTCTTCCTGTTCCCCCCAAAACCCAAGGACACTCTCATGATCTCCCGGACCCCTGAGGTCACGTGCGTGGTGGTGGACGTGAGCCAGGAAGACCCCGAG
 SacII (858)
801 GTCCAGTTCAACTGGTACGTGGATGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTTCAACAGCACGTACCGTGTGGTCAGCGTCC 50. V Q F N W Y V D G V E V H N A K T K P R E E Q F N StuI (964)
901 TCACCGTCCTGCACCAGGACTGGCTGAACGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGGCCTCCCGTCCTCCATCGAGAAAACCATCTCCAAAGC 83' L T V L H Q D W L N G K BsrGI (1027)
1001 CAAAGGGCAGCCCCGAGAGCCACAGGTGTACACCCTGCCCCCCATCCCAGGAGGAGATGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTC
 1101 TACCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCC 150. Y P S D I A V E W E S N G Q P E N N Y K T T P P XmnI (1243) NsiI (1270) SapI (1293)
1201 TCTACAGCAGGCTAACCGTGGACAAGAGCAGGTGGCAGGAGGGGAATGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACACAGAA 183 L Y S R L T V D K S R W \quad Q E G N V F MscI (1338)
NheI (1330)
1301 GAGCCTCTCCCTGTCTCIGGGTAAATAAAGCTAGCTGGCCAGACATGATAAGATACATTGATGAGTTTGGACAAACCACAACTAGAATGCAGTGAAAAAA 216. S L S L S L G K •

HpaI (1470)

1401 ATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAACAATTGCATTCATTTTATGTTT

SapI (1757)
1701 TTCTTTCATGGAGTTTAAGATATAGTGTATTTTCCCAAGGTTTGAACTAGCTCTTCATTTCTTTATGTTTTAAATGCACTGACCTCCCACATTCCCTTTT
$1801 \begin{gathered}\text { SspI (1809) } \\ \text { TAGTAAAATATTCAGAAATAATTTAAATACATCATTGCAATGAAAATAAATGTTTTTTATTAGGCAGAATCCAGATGCTCAAGGCCCTTCATAATATCCC }\end{gathered}$

1901 CCAGTTTAGTAGTTGGACTTAGGGAACAAAGGAACCTTTAATAGAAATTGGACAGCAAGAAAGCGAGCTTCTAGCTTATCCTCAGTCCTGCTCCTCTGCC $\longrightarrow 125$ • D Q E E A ApaLI (2006) EagI (2020)
2001 ACAAAGTGCACGCAGTTGCCGGCCGGGTCGCGCAGGGGCGAACTCCCGCCCCCACGGCTGCTCGCCGATCTCGGTCATGGCCGGCCCGGAGGCGTCCCGGA
 2101 AGTTCGTGGACACGACCTCCGACCACTCGGCGTACAGCTCGTCCAGGCCGCGCACCCACACCCAGGCCAGGGTGTTGTCCGGCACCACCTGGTCCTGGAC 85 N T S V V E S W E A Y L E D L G R V W V W A L T N D P V V \quad Q $D \quad Q \quad V$ Sgrai (2237) XmaI (2263) BsrBI (2304)
2201 CGCGCTGATGAACAGGGTCACGTCGTCCCGGACCACACCGGCGAAGTCGTCCTCCACGAAGTCCCGGGAGAACCCGAGCCGGTCGGTCCAGAACTCGACC 524 A I F L T V D D R V V G A F D D E V F D R S F G L R D T

2401 aattgCTATAGTGAGTTGTATTATACTATGCAGATATACTATGCCAATGATTAATTGTCAAACTAGGGCTGCAgggttcatagtgccacttttcctgcac

2501 tgccccatctcctgcccaccctttcccaggcatagacagtcagtgacttacCAAACTCACAGGAGGGAGAAGGCAGAAGCTTGAGACAGACCCGCGGGAC
StuI (2679)
2601 CGCCGAACTGCGAGGGGACGTGGCTAGGGCGGCTTCTTTTTATGGTGCGCCGGCCCTCGGAGGCAGGGCGCTCGGGGAGGCCTAGCGGCCAATCTGCGGTG

BspEI (2735)

2701 GCAGGAGGCGGGGCCGAAGGCCGTGCCTGACCAATCCGGAGCACATAGGAGTCTCAGCCCCCCGCCCCAAAGCAAGGGGAAGTCACGCGCCTGTAGCGCC

SpeI (2842)

Bsp120I (2834)
2801 AGCGTGTTGTGAAATGGGGGCTTGGGGGGGTTGGGGCCCTGACTAGTCAAAACAAACTCCCATTGACGTCAATGGGGGTGGAGACTTGGAAATCCCCGTGA
SnaBI (2972)
2901 GTCAAACCGCTATCCACGCCCATTGATGTACTGCCAAAACCGCATCATCATGGTAATAGCGATGACTAATACGTAGATGTACTGCCAAGTAGGAAAGTCC
NdeI (3076)
3001 CATAAGGTCATGTACTGGGCATAATGCCAGGCGGGCCATTTACCGTCATTGACGTCAATAGGGGGCGTACTTGGCATATGATACACTTGATGTACTGCCA
3101 AGTGGGCAGTTTACCGTAAATACTCCACCCATTGACGTCAATGGAAAGTCCCTATTGGCGTTACTATGGGAACATACGTCATTATTGACGTCAATGGGCG

Pacl (3265)
PstI (3258)
3201 GGGGTCGTTGGGCGGTCAGCCAGGCGGGCCATTTACCGTAAGTTATGTAACGCCTGCAGGTTAATTAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCA
3301 GGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCC
3401 GACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTC
ApaLI (3585)
3501 CCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGCTGGGCTGTGTGCACGAACCCCCCG
3601 TTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGAT
3701 TAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTG
3801 AAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTTGTTTGCAAGCAGCAGATTACGC
3901 GCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGGCTAG
EagI (4021)
PacI (4005) SwaI (4013) NotI (4021)
4001 TTAATTAACATTTAAATCAGCGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTGTGTTGGTTTTTTGTGTGAATCGTAACTAACATACGCTCTCC
4101 ATCAAAACAAAACGAAACAAAACAAACTAGCAAAATAGGCTGTCCCCAGTGCAAGTGCAGGTGCCAGAACATTTCTCTATCGAA

