

Technical Bulletin

siCHECK[™] Vectors

INSTRUCTIONS FOR USE OF PRODUCTS C8011 AND C8021.

PRINTED IN USA. Revised 6/09

Part# TB329

www.promega.com

siCHECKTM Vectors

All technical literature is available on the Internet at: www.promega.com/tbs Please visit the web site to verify that you are using the most current version of this Technical Bulletin. Please contact Promega Technical Services if you have questions on use of this system. E-mail: techserv@promega.com

1. Description	1
2. Product Components and Storage Conditions	2
 3. General Considerations A. siCHECK[™] Vector Features B. How the siCHECK[™] Vectors Work 	3 4
C. Sample Experiments Using the siCHECK [™] Vectors 4. siCHECK [™] Vector Maps	
 5. siCHECK[™] Vector Restriction Enzyme Tables A. Restriction Enzyme Sites for the psiCHECK[™]-1 Vector B. Restriction Enzyme Sites for the psiCHECK[™]-2 Vector 	11
6. siCHECK [™] Vector Backbones and Components	15
7. References	16
8. Related Products	

1. Description

The psiCHECK[™]-1 Vector^(a-d) (Cat.# C8011) and psiCHECK[™]-2 Vector^(a-f) (Cat.# C8021) are designed to provide a quantitative and rapid approach for optimization of RNA interference (RNAi). The vectors enable the monitoring of changes in expression of a target gene fused to the reporter gene. In both vectors, *Renilla* luciferase is used as a primary reporter gene, and the gene of interest can be cloned into the multiple cloning region located downstream of the *Renilla* luciferase translational stop codon. Initiation of the RNAi process toward a gene of interest results in cleavage and subsequent degradation of fusion mRNA. Measurement of decreased *Renilla* luciferase activity is a convenient indicator of RNAi effect (1).

RNAi is a phenomenon by which double-stranded RNA complementary to a target mRNA can specifically inactivate gene function by stimulating the degradation of the target mRNA (2-4). Because of the ability to inactivate genes, RNAi has emerged as a powerful tool for analyzing gene function.

 Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA

 Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.com

 Printed in USA.

 Perised 6/09

Page 1

O Promega

In mammalian systems, including cultured mammalian cells, chemically synthesized double-stranded short interfering RNA molecules (<30 nucleotides; siRNA) or endogenously expressed short hairpin RNA molecules (shRNA) result in dsRNA duplexes <30 base pairs in length that induce RNAi (5–10). RNAi duplexes >30bp induce the interferon response and nonspecific degradation of mRNA and cannot be used as tools for specific gene silencing (11,12).

Interestingly, a significant percentage of the siRNA or shRNA designed for a specific gene are not effective (5,13–16). On average only 1 in 5 of the siRNA/shRNAs selected for targeting a specific region show efficient gene silencing (16,17). Possible causes for the failure of a particular siRNA/shRNA may be instability of an siRNA probe in vivo, inability to interact with components of the RNAi machinery or the inaccessibility of the target mRNA due to local secondary structural constraints. Analysis of nucleotide sequences, melting temperatures and secondary structures have not revealed any obvious difference between effective and ineffective siRNA/shRNA (18).

At present, one of the most serious limitations for the RNAi technology is the lack of a rapid, reliable, quantitative target-site screening method. Various algorithm programs exist that aid in the design of potential siRNA targets. However, an experimental method is needed to screen these siRNAs. Current screening technologies include such semi-quantitative, time-consuming methods as fluorescence change for GFP-target fusions, Western blot analysis, monitoring phenotypic changes or RT-PCR. In addition, the current screening technologies are not easily modified for the rapid, simultaneous screening of multiple siRNA/shRNA.

2. Product Components and Storage Conditions

Product	Size	Cat.#
psiCHECK™-1 Vector	20µg	C8011
psiCHECK™-2 Vector	20µg	C8021

Storage Conditions: Store the psiCHECK[™]-1 and psiCHECK[™]-2 Vectors at -20°C.

 Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA

 Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.com

 Part# TB329

 Printed in USA.

 Page 2

3. General Considerations

3.A. siCHECK[™] Vector Features

Current methods to monitor changes in gene expression as the result of RNAi are either semi-quantitative, time-consuming or not applicable to high-throughput screening. The siCHECKTM Vectors are easier to use than currently available methods, allow optimal quantitative target site selection and can be adapted for use in high-throughput methodologies.

There are two siCHECKTM Vectors, the psiCHECKTM-1 Vector and the psiCHECKTM-2 Vector. Both vectors contain as the primary reporter gene the synthetic version of *Renilla* luciferase, *hRluc*, which is used to monitor changes in expression as the result of RNAi induction. This synthetic gene is engineered for more efficient expression in mammalian cells and for reduced anomalous transcription.

To aid in fusion of the target gene to the synthetic *Renilla* luciferase reporter gene, a region of restriction sites (i.e., the multiple cloning region) has been added 3' to the *Renilla* translational stop. The restriction sites present in the multiple cloning region can be used to create genetic fusions between the gene of interest and the *Renilla* reporter gene. Because no fusion protein is expressed, there is no need to be concerned about whether you have cloned into a proper translational reading frame.

The multiple cloning region of the psiCHECK[™]-1 Vector contains unique restriction sites Sgfl, XhoI, SmaI, EcoRI, PmeI and NotI. Due to the presence of the firefly expression cassette, the psiCHECK[™]-2 Vector contains fewer unique restriction sites. The restriction sites in the psiCHECK[™]-2 Vector multiple cloning region are Sgfl, XhoI, PmeI and NotI.

The promoter used for *Renilla* luciferase expression in the siCHECK[™] Vectors is the SV40 promoter. Experimental results (data not shown) demonstrate that the SV40 promoter results in the best balance between *Renilla* luciferase expression and the detection of RNAi activity when used with siRNA or vectors expressing shRNA.

The difference between the two siCHECK[™] Vectors is that the psiCHECK[™]-2 Vector possesses a secondary firefly reporter expression cassette. The firefly expression cassette consists of an HSV-TK promoter, a synthetic firefly luciferase gene and an SV40 late poly(A) signal. To reduce the potential for recombination events, the *Renilla* luciferase reporter gene in the psiCHECK[™]-2 Vector uses a synthetic poly(A). This firefly reporter cassette has been specifically designed to be an intraplasmid transfection normalization reporter; thus when using the psiCHECK[™]-2 Vector, the *Renilla* luciferase signal can be normalized to the firefly luciferase signal.

If no transfection normalization is required or one would prefer to have the transfection normalization reporter on a second plasmid, the psiCHECKTM-1 Vector is the vector of choice.

3.A. siCHECKTM Vector Features (continued)

The psiCHECK[™]-1 Vector is recommended for use in monitoring RNAi effects in live cells. The changes in *Renilla* luciferase activity are measured with EnduRen[™] Live Cell Substrate (Cat.# E6481), which allows continuous monitoring of intracellular *Renilla* luminescence (19; Figure 2). EnduRen[™] Live Cell Substrate is for use only with *Renilla* luciferase.

Promega offers several reagents that can be used in conjunction with the siCHECK[™] Vectors to monitor *Renilla* and/or firefly luciferase signals. For the psiCHECK[™]-1 Vector, which only contains the *Renilla* luciferase reporter gene, the *Renilla* Luciferase Assay System (Cat.# E2810, E2820) can be used. The psiCHECK[™]-2 Vector, which contains *Renilla* and firefly luciferase reporter genes, requires the use of either the Dual-Luciferase® Reporter Assay System (Cat.# E1910) or the Dual-Glo[™] Luciferase Assay System (Cat.# E2920) to generate the firefly and *Renilla* luciferase signals.

3.B. How the siCHECK[™] Vectors Work

Figure 1 provides a basic description of how the siCHECK[™] Vectors work. Using the unique restriction sites, the gene of interest is cloned into the multiple cloning region located 3' to the synthetic *Renilla* luciferase gene and its translational stop codon. After cloning, the vector is transfected into the mammalian cell line of choice, and a fusion of the *Renilla* luciferase gene and the gene of interest is transcribed. Vectors expressing potential shRNA or siRNA can be cotransfected simultaneously or sequentially, depending on your experimental design. If a specific shRNA/siRNA binds to the target mRNA and initiates the RNAi process, the fused *Renilla* luciferase:gene of interest mRNA will be cleaved and subsequently degraded, decreasing the *Renilla* luciferase signal.

 Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA

 Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.com

 Part# TB329

 Page 4

O Promega

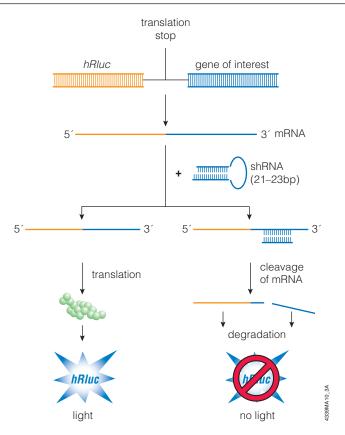


Figure 1. Mechanism of action of the siCHECK[™] Vectors.

3.C. Sample Experiments Using the siCHECK[™] Vectors

To demonstrate the utility of the siCHECK[™] Vectors, two experiments are detailed in this Technical Bulletin. In the first experiment, human p53 cDNA was subcloned into the psiCHECK[™]-1 and the psiCHECK[™]-2 Vectors using the SgfI and NotI restriction sites located in the multiple cloning region of both vectors. Note the SgfI and NotI restriction sites are located 3′ to the *Renilla* luciferase translational stop codon. As shown in Figure 2, the psiCHECK[™]-1 Vector containing the human p53 cDNA was cotransfected into HEK-293T cells with the psiLentGene[™] Basic Vector expressing either a *Renilla* luciferase (*hRluc*) or p53 shRNA. The negative control was the psiLentGene[™] Basic Vector with a nonspecific 19bp insert. (A BLAST search using this 19bp sequence and a threshold >90% revealed no homology to any known mammalian gene or to the synthetic *Renilla* luciferase gene.) This nonspecific sequence was used for all RNAi experiments in this Technical Bulletin.

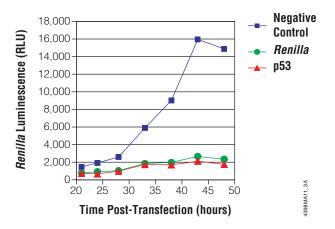


Figure 2. Inhibition of *Renilla* luciferase expression by targeting either the *Renilla* luciferase or p53 gene. The human p53 cDNA was subcloned into the psiCHECK™-1 Vector using the SgfI and NotI restriction sites located 3' to the Renilla luciferase translational stop codon. To begin the transfection assay, HEK-293T cells were plated in a 96-well plate at 3,000 cells/well. After an overnight incubation, the cells were treated with a transfection mixture consisting of 35µl of serum-free medium, 0.3µl of TransFast[™] Transfection Reagent (Cat.# E2431), 0.02µg of psiCHECK[™]-1:p53 vector and 0.08µg of psiLentGene™ Basic Vector per well. For this experiment, the psiLentGene™ Vector expressed shRNAs directed against human p53, Renilla luciferase or the nonspecific 19bp sequence, which serves as a negative control, (Section 3.C). After a one-hour incubation, 100µl of serum-containing medium was added to the wells. At 21 hours post-transfection, EnduRen[™] Live Cell Substrate (Cat.# E6481) was added to a final concentration of 60µM, and Renilla luciferase activity was monitored. Renilla luciferase activities were normalized to the number of viable cells using the CellTiter-Glo® Luminescent Cell Viability Assay (Cat.# G7573; 20).

 Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA

 Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.com

 Part# TB329

 Printed in USA.

 Page 6

At 21 hours post-transfection, nonlytic EnduRen[™] Live Cell Substrate was added to the wells; luminescence was monitored for the next 27 hours until 48 hours post-transfection. The data in Figure 2 show that the psiLentGene[™] Basic Vector expressing either *Renilla* luciferase or p53 shRNA inhibits the expression of the *Renilla* luciferase reporter gene from the psiCHECK[™]-1:p53 vector. Interestingly, using either *Renilla* luciferase or p53 shRNA results in virtually identical inhibition of *Renilla* luciferase expression.

In a second experiment, the human p53 cDNA used in Figure 2 was subcloned into the psiCHECKTM-2 Vector using the SgfI and NotI restriction sites. Five potential p53 shRNAs designed to bind to five different target sites were cloned into the psiLentGeneTM Basic Vector; the resulting vectors were named Site 1 through Site 5. The control is a psiLentGeneTM Vector containing the nonspecific 19bp sequence. The psiCHECKTM-2 Vector containing the p53 cDNA was cotransfected with the psiLentGeneTM Vector expressing either a p53 shRNA (Figure 3, Sites 1–5) or the nonspecific shRNA into HEK-293T cells as described in Figure 3. Forty-eight hours after transfection, the medium was removed and cells were lysed in Passive Lysis Buffer (Cat.# E1941). The firefly and *Renilla* luciferase signals were generated using the Dual-Luciferase[®] Reporter 1000 Assay System (21).

Figure 3, Panel A, displays the *Renilla* luciferase signal, while Figure 3, Panel B, shows the *Renilla* luciferase signal normalized (corrected for transfection efficiency to the firefly luciferase signal). The data in Figure 3, Panel A, is difficult to interpret due to transfection variations. The *Renilla* luciferase positive control, which should demonstrate inhibition of reporter expression, is not statistically different (i.e., overlapping error bars) from the negative control (no effect on reporter expression was detected). The inability to distinguish between the positive and negative controls renders any conclusion regarding the effectiveness of potential shRNAs suspect.

However, when the *Renilla* luciferase signals are normalized (see Figure 3, Panel B) to the internal firefly luciferase transfection control, the data interpretation is different, as the *Renilla* luciferase positive control is statistically different from the negative control. In addition, the normalized data allow the ability to distinguish the effectiveness of the various target site shRNAs.

 Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA

 Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.com

 Printed in USA.

 Pervised 6/09

O Promega

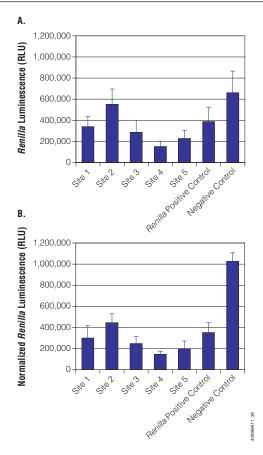


Figure 3. Target site selection using the psiCHECK™-2 Vector. HEK-293T cells were seeded into a 96-well plate at a density of 3,000 cells/well. Human p53 cDNA was subcloned into the psiCHECK[™]-2 Vector using the SgfI and NotI restriction sites. After an overnight incubation, the cells were treated with a transfection mixture consisting of 35µl of serum-free medium, 0.3µl of TransFast™ Transfection Reagent (Cat.# E2431), 0.02µg of psiCHECK[™]-2 Vector:p53 and 0.08µg of psiLentGene[™] Basic Vector per well. The psiLentGene™ Basic Vector expressed one of five different shRNAs directed against human p53, Renilla luciferase or a nonspecific 19bp sequence (Section 3.C) as a negative control. After a one-hour incubation, 100µl of serum-containing medium was added to the wells. Forty-eight hours posttransfection Renilla and firefly luciferase activities were measured using the Dual-Luciferase® Reporter 1000 Assay System (Cat.# E1980; 21). Panel A displays the raw Renilla luciferase data, while in Panel B, the Renilla luciferase data has been normalized to firefly luciferase data. The data represent the mean of 12 wells plus or minus the standard deviation. Note that in other experiments the ability of different shRNAs to inhibit gene expression might vary more dramatically.

 Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA

 Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.com

 Part# TB329

 Part# TB329

 Revised 6/09

4. siCHECK[™] Vector Maps

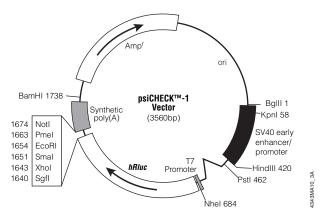
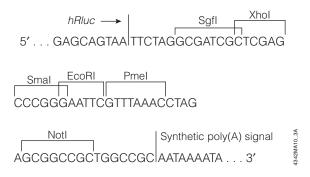
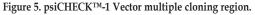
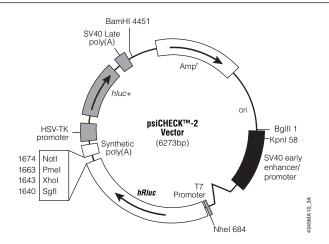
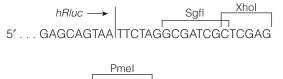
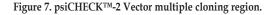




Figure 4. psiCHECK[™]-1 Vector map. -^- denotes the intron.

psiCHECK[™]-1 Vector sequence reference points:

SV40 early enhancer/promoter	7-425
Chimeric intron	489-621
T7 RNA polymerase promoter	666-684
Synthetic Renilla luciferase gene (hRluc)	694-1629
Multiple cloning region	1636-1680
Synthetic poly(A)	1688-1736
β-lactamase (Amp ^r) coding region	1874-2734


Figure 6. psiCHECK[™]-2 Vector map. -^- denotes the intron.

psiCHECK[™]-2 Vector sequence reference points:

SV40 early enhancer/promoter	7-425
Chimeric intron	489-621
T7 RNA polymerase promoter	666-684
Synthetic Renilla luciferase gene (hRluc)	694-1629
Multiple cloning region	1636-1680
Synthetic poly(A)	1688-1736
HSV-TK promoter	1744-2496
Synthetic firefly luciferase gene (<i>hluc</i> +)	2532-4184
SV40 late poly(A)	4219-4440
β-lactamase (Amp ^r) coding region	4587-5447

 Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA

 Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.com

 Part# TB329

 Part# TB329

 Page 10

5. siCHECK[™] Vector Restriction Enzyme Tables

5.A. Restriction Enzyme Sites for the psiCHECK[™]-1 Vector

The following restriction enzyme tables were constructed using DNASTAR[®] sequence analysis software. Please note that we have not verified this information by restriction digestion with each enzyme listed. The location given specifies the 3'-end of the cut DNA (the base to the left of the cut site). For more information on the cut sites of these enzymes, or to report a discrepancy, please contact your local Promega Branch or Distributor. In the U.S., contact Promega Technical Services at 800-356-9526. Vector sequences are available from the GenBank[®] database (GenBank[®]/EMBL accession number **AY535006**) and online at: **www.promega.com/vectors/**

Table 1. Restriction Enzymes That Cut the psiCHECKTM-1 Vector Between 1 and 5 Times.

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
AatII	1	1391	DraI	4	1663, 2083, 2775,
Acc65I	1	54			2794
AcyI	2	1388, 2121	DraII	1	1539
AflII	2	452, 649	DraIII	1	882
Alw44I	2	1989, 3235	DrdI	2	441, 3447
AlwNI	1	3140	DsaI	4	15, 311, 692, 899
AspHI	4	1091, 1993, 2078,	EaeI	3	1674, 1681, 2268
		3239	EagI	1	1674
AvaI	3	715, 1643, 1649	EarI	2	1193, 1862
AvaII	2	2297, 2519	EclHKI	1	2661
AvrII	1	404	Eco52I	1	1674
BamHI	1	1738	Eco81I	1	1280
BanI	3	54, 575, 2708	EcoRI	1	1654
BanII	3	759, 899, 1650	EcoRV	1	1179
BbsI	1	560	FspI	2	8, 2438
BbuI	2	152, 224	HaeII	1	3309
BclI	2	734, 1187	HgaI	4	1570, 2129, 2859,
BglI	3	357, 694, 2543			3437
BglII	1	1	HindIII	1	420
BsaI	3	514, 1234, 2595	Hsp92I	2	1388, 2121
BsaOI	5	1640, 1677, 2143,	KpnI	1	58
		2292, 3215	MspA1I	5	80, 1679, 2025,
BsaBI	1	1453			2966, 3211
BsaHI	2	1388, 2121	NciI	5	1650, 1651, 2125,
BspHI	2	1821, 2829			2476, 3172
BspMI	1	476	NcoI	3	15, 311, 692
BssSI	2	1992, 3376	NheI	1	684
Bst98I	2	452, 649	NotI	1	1674
BstZI	1	1280	NruI	1	1355
Cfr10I	1	2576	NsiI	3	154, 226, 913

 Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA

 Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.com

 Printed in USA.

 Part# TB329

 Revised 6/09

5.A. Restriction Enzyme Sites for the psiCHECK[™]-1 Vector (continued)

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
NspI	2	152, 224	SmaI	1	1651
PaeR7I	1	1643	SphI	2	152, 224
PmeI	1	1663	SspI	1	1856
Ppu10I	3	150, 222, 909	StuI	1	403
PspAI	1	1649	StyI	5	15, 311, 404, 692,
PstI	1	462			701
PvuI	2	1640, 2292	TfiI	2	426, 805
PvuII	1	80	Tth111I	1	1390
ScaI	2	662, 2180	VspI	1	2486
SfiI	1	357	XhoI	1	1643
SgfI	1	1640	XmaI	1	1649
SinI	2	2297, 2519	XmnI	2	1228, 2061

Table 1. Restriction Enzymes That Cut the psiCHECK[™]-1 Vector Between 1 and 5 Times (continued).

Table 2. Restriction Enzymes That Do Not Cut the psiCHECK ^T
--

AccB7I	BsaAI	Eco47III	NaeI	SacI
AccI	BsaMI	Eco72I	NarI	SacII
AccIII	BsmI	EcoICRI	NdeI	Sall
AflIII	Bsp120I	EcoNI	NgoMIV	SgrAI
AgeI	BsrGI	EheI	PacI	SnaBI
ApaI	BssHII	FseI	PflMI	SpeI
AscI	Bst1107I	HincII	PinAI	SplI
BalI	Bst EII	HindII	PmlI	SrfI
BbeI	BstXI	HpaI	PpuMI	Sse8387I
BbrPI	ClaI	I-PpoI	PshAI	SwaI
BlpI	CspI	KasI	Psp5II	XbaI
Bpu1102I	Csp45I	MluI	RsrII	XcmI

Table 3. Restriction Enzymes That Cut the psiCHECK™-1 Vector 6 or More Times.

AciI	BstOI	HhaI	MboII	Sau3AI
AluI	BstUI	HinfI	MnlI	Sau96I
Alw26I	CfoI	HpaII	MseI	ScrFI
BbvI	DdeI	HphI	MspI	SfaNI
BsaJI	DpnI	Hsp92II	NdeII	TaqI
Bsp1286I	DpnII	MaeI	NlaIII	Tru9I
BsrI	Fnu4HI	MaeII	NlaIV	XhoII
BsrSI	FokI	MaeIII	PleI	
Bst71I	HaeIII	MboI	RsaI	

Note: The enzymes listed in boldface type are available from Promega.

 Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA

 Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.com

 Part# TB329

 Printed in USA.

 Page 12

5.B. Restriction Enzyme Sites for the psiCHECK[™]-2 Vector

The following restriction enzyme tables were constructed using DNASTAR[®] sequence analysis software. Please note that we have not verified this information by restriction digestion with each enzyme listed. The location given specifies the 3'-end of the cut DNA (the base to the left of the cut site). For more information on the cut sites of these enzymes, or to report a discrepancy, please contact your local Promega Branch or Distributor. In the U.S., contact Promega Technical Services at 800-356-9526. Vector sequences are available from the GenBank[®] database (GenBank[®]/EMBL accession number **AY535007**) and online at: **www.promega.com/vectors/**

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
AatII	1	1391	BsrGI	1	3022
AccI	2	2079, 3132	BssHII	1	1978
Acc65I	1	54	BssSI	3	3459, 4705, 6089
AflII	4	452, 649 , 1773,	Bst1107I	1	2080
		1897	Bst98I	4	452, 649, 1773,
AflIII	1	2450			1897
Alw44I	2	4702, 5948	BstXI	1	3650
AlwNI	2	2094, 5853	BstZI	3	1674, 4202, 4206
ApaI	1	2562	Bsu36I	3	1280, 3145, 3745
AvrII	2	404, 2059	ClaI	1	4444
Ball	3	1865, 3513, 4038	Csp45I	1	2390
BamHI	1	4451	DraI	5	1663, 4410, 4796,
BanII	5	759, 899, 1650,			5488, 5507
		2050, 2562	DraIII	1	882
BbeI	4	2030, 2815, 3481,	DrdI	2	441, 6160
		3613	EagI	3	1674, 4202, 4206
BbsI	2	560, 1743	EarI	5	1193, 1874, 2616,
BbuI	2	152, 224			2727, 4575
BclI	5	734, 1187, 3112,	EclHKI	1	5374
		3853, 4147	Eco47III	1	3519
BglII	1	1	Eco52I	3	1674, 4202, 4206
BsaI	4	514, 1234, 2123,	Eco81I	3	1280, 3145, 3745
		5308	EcoNI	3	2721, 3144, 4149
BsaAI	2	2083, 3734	EcoRI	2	1654, 2386
BsaBI	4	1453, 2979, 4146,	EcoRV	1	1179
		4450	EheI	4	2028, 2813, 3479,
BsaMI	3	2504, 4270, 4363			3611
BsmI	3	2504, 4270, 4363	FseI	2	3943, 4208
Bsp120I	1	2558	FspI	3	8, 3354, 5151
BspHI	3	3115, 4534, 5542	HincII	1	4349
BspMI	2	476, 3463	HindII	1	4349

Table 4. Restriction Enzymes That Cut the psiCHECK[™]-2 Vector Between 1 and 5 Times.

 Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA

 Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.com

 Printed in USA.

 Perived 6/09

Page 13

5.B. Restriction Enzyme Sites for the psiCHECKTM-2 Vector (continued)

Enzyme	# of Sites	Location	Enzyme	# of Sites	Location
HindIII	2	420, 2497	PpuMI	1	2056
HpaI	1	4349	Psp5II	1	2056
KasI	4	2026, 2811, 3477,	PspAI	2	1649, 2019
		3609	PvuI	2	1640, 5005
KpnI	1	58	PvuII	3	80, 2268, 2606
MluI	1	2450	SacII	1	2036
NaeI	3	3941, 3962, 4206	ScaI	3	4893, 2697
NarI	4	2027, 2812, 3478,	SfiI	1	357
		3610	SgfI	1	1640
NcoI	5	15, 311, 692,	SmaI	2	1651, 2021
		2067, 2530	SphI	2	152, 224
NgoMIV	3	3939, 3960, 4204	SspI	1	4569
NheI	1	684	StuI	1	403
NotI	1	1674	TfiI	2	426, 805
NruI	1	1355	Tth111I	1	1390
NsiI	3	154, 226, 913	VspI	1	5199
NspI	5	152, 224, 2336,	XbaI	1	4189
		3023, 3278	XhoI	1	1643
PaeR7I	1	1643	XmaI	2	1649, 2019
PmeI	1	1663	XmnI	2	1228, 4774
Ppu10I	3	150, 222, 909			

Table 4. Restriction Enzymes That Cut the psiCHECK[™]-2 Vector Between 1 and 5 Times (continued).

Table 5. Restriction Enzymes That Do Not Cut the psiCHECK[™]-2 Vector.

AccB7I	Bpu1102I	NdeI	RsrII	SplI
AccIII	BstEII	PacI	SacI	SrfI
AgeI	CspI	PflMI	Sall	Sse8387I
AscI	Eco72I	PinAI	SgrAI	SwaI
BbrPI	EcoICRI	PmlI	SnaBI	XcmI
BlpI	I-PpoI	PshAI	SpeI	

 Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA

 Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.com

 Part# TB329

 Page 14

AciI	Bsp1286I	EaeI	MaeII	PstI
AcyI	BsrI	Fnu4HI	MaeIII	RsaI
AluI	Bsr SI	FokI	MboI	Sau3AI
Alw26I	Bst71I	HaeII	MboII	Sau 96I
AspHI	BstOI	HaeIII	MnlI	ScrFI
AvaI	BstUI	HgaI	MseI	SfaNI
AvaII	CfoI	HhaI	MspI	SinI
BanI	Cfr10I	HinfI	MspA1I	StyI
BbvI	DdeI	HpaII	NciI	TaqI
BglI	DpnI	HphI	NdeII	Tru9I
BsaOI	DpnII	Hsp92I	NlaIII	XhoII
BsaHI	Drall	Hsp92II	NlaIV	
BsaJI	DsaI	MaeI	PleI	

Table 6. Restriction Enzymes That Cut the psiCHECK[™]-2 Vector 6 or More Times.

Note: The enzymes listed in boldface type are available from Promega.

6. siCHECK[™] Vector Backbones and Components

The vector backbones of the psiCHECK[™]-1 and psiCHECK[™]-2 Vectors are based on the phRL-SV40 Vector (Cat.# E6261). Both the psiCHECK[™]-1 Vector and psiCHECK[™]-2 Vector contain the synthetic *Renilla* luciferase reporter gene. The psiCHECK[™]-2 Vector also contains a synthetic firefly luciferase gene. These synthetic luciferase genes have been codon optimized for more efficient mammalian expression and have been designed with a greatly reduced number of consensus transcription factor binding sites for reduced risk of anomalous transcriptional behavior.

SV40 Early Enhancer/Promoter

The psiCHECKTM-1 Vector and psiCHECKTM-2 Vector contain the SV40 early enhancer/promoter region, which provides strong, constitutive expression of *Renilla* luciferase in a variety of cell types.

Chimeric Intron

Downstream of the SV40 enhancer/promoter region is a chimeric intron composed of the 5'-donor site from the first intron of the human β -globin and the branch and 3'-acceptor site from the intron that is between the leader and the body of an immunoglobin gene heavy chain variable region (22). The sequences of the donor and acceptor sites, along with the branch point site, have been changed to match the consensus sequence for splicing (23). Transfection studies have demonstrated that the presence of an intron flanking the cDNA insert frequently increases the level of gene expression (24–27).

T7 Promoter

A T7 RNA polymerase promoter is located downstream of the chimeric intron and immediately precedes the synthetic *Renilla* luciferase reporter gene. This promoter can be used to synthesize RNA transcripts in vitro using T7 RNA Polymerase (Cat.# P2075). Note that the T7 promoter has been verified by sequence only; there has been no functional testing of the T7 promoter.

Polyadenylation Signals (SV40 Late and Synthetic)

Polyadenylation signals are coupled to the termination of transcription by RNA polymerase II and signal the addition of approximately 200–250 adenosine residues to the 3'-end of the RNA transcript (28). Polyadenylation has been shown to enhance RNA stability and translation (29,30). The late SV40 polyadenylation signal is extremely efficient and has been shown to increase the steady-state level of RNA to approximately fivefold more than that of the early SV40 polyadenylation signal (31). The synthetic poly(A) was cloned from our pCI-neo Vector (Cat.# E1841). The synthetic poly(A) signal is based on the highly efficient polyadenylation signal of the rabbit β-globin gene (32).

7. References

- Kumar, R., Conklin, D.S. and Mittal, V. (2003) High-throughput selection of effective RNAi probes for gene silencing. *Genome Res.* 13, 2333–40.
- 2. Bass, B.L. (2000) Double-stranded RNA as a template for gene silencing. Cell 101, 235-8.
- Zamore, P.D. (2001) RNA interference: Listening to the sound of silence. Nature Struct. Biol. 8, 746–50.
- 4. Sharp, P.A. (2001) RNA interference 2001. Genes Dev. 15, 485-90.
- Gil, J. and Esteban, M. (2000) Induction of apoptosis by the dsRNA-dependent protein kinase (PKR): Mechanism of action. *Apoptosis* 5, 107–14.
- Marcus, P.I. and Sekellick, M.J. (1985) Interferon induction by viruses. XIII. Detection and assay of interferon induction-suppressing particles. *Virology* 142, 411–5.
- Elbashir, S.M. et al. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. *Nature* 411, 494–8.
- Brummelkamp, T.R., Bernards, R. and Agami, R. (2002) A system for stable expression of short interfering RNAs in mammalian cell. *Science* 296, 550–3.
- Elbashir, S.M. et al. (2002) Analysis of gene function in somatic mammalian cells using small interfering RNAs. *Methods* 26, 199–213.
- Paddison, P.J. et al. (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16, 948–58.
- Paul, C.P. et al. (2002) Effective expression of small interfering RNA in human cells. Nature Biotechnol. 20, 505–8.

 Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA

 Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.com

 Part# TB329

 Page 16

- Sui, G. et al. (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99, 5515–20.
- Holen, T. *et al.* (2002) Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. *Nucl. Acids Res.* 30, 1757–66.
- Lee, N.S. et al. (2002) Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nature Biotechnol. 20, 500–5.
- Yu, J-Y., DeRuiter, S.L. and Turner, D.L. (2002) RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. *Proc. Natl. Acad. Sci.* USA 99, 6047–52.
- Kapadia, S.B., Brideau-Andersen, A. and Chisari, F.V. (2003) Interference of hepatitis C virus RNA replication by short interfering RNAs. Proc. Natl. Acad. Sci. USA 100, 2014–8.
- McManus, M.T. et al. (2002) Gene silencing using micro-RNA designed hairpins. RNA 8, 842–50.
- Hohjoh, H. (2002) RNA interference (RNA(i)) induction with various types of synthetic oligonucleotide duplexes in cultured human cells. FEBS Lett. 521, 195-9.
- 19. EnduRen™ Live Cell Substrate Technical Manual, #TM244, Promega Corporation.
- CellTiter-Glo® Luminescent Cell Viability Assay Technical Bulletin, #TB288, Promega Corporation.
- Dual-Luciferase® Reporter 1000 Assay System Technical Manual, #TM046, Promega Corporation.
- Bothwell, A.L. *et al.* (1981) Heavy chain variable region contribution to the NPb family of antibodies: Somatic mutation evident in a gamma 2a variable region. *Cell* 24, 625–37.
- Senapathy, P., Shapiro, M.B. and Harris, N.L. (1990) Splice junctions, branch point sites, and exons: Sequence statistics, identification, and applications to genome project. *Methods Enzymol.* 183, 252–78.
- Gross, M.K., Kainz, M.S. and Merrill, G.F. (1987) Introns are inconsequential to efficient formation of cellular thymidine kinase mRNA in mouse L cells. *Mol. Cell. Biol.* 7, 4576–81.
- Buchman, A.R. and Berg, P. (1988) Comparison of intron-dependent and intronindependent gene expression. *Mol. Cell. Biol.* 8, 4395–405.
- Evans, M.J. and Scarpulla, R.C. (1989) Introns in the 3'-untranslated region can inhibit chimeric CAT and beta-galactosidase gene expression. *Gene* 84, 135–42.
- Huang, M.T. and Gorman, C.M. (1990) Intervening sequences increase efficiency of RNA 3' processing and accumulation of cytoplasmic RNA. *Nucl Acids Res.* 18, 937-47.
- 28. Proudfoot, N. (1991) Poly(A) signals. Cell 64, 671-4.
- Bernstein, P. and Ross, J. (1989) Poly(A), poly(A) binding protein and the regulation of mRNA stability. *Trends Biochem. Sci.* 14, 373–7.
- Jackson, R.J. and Standart, N. (1990) Do the poly(A) tail and 3' untranslated region control mRNA translation? *Cell* 62, 15–24.
- Carswell, S. and Alwine, J.C. (1989) Efficiency of utilization of the simian virus 40 late polyadenylation site: Effects of upstream sequences. *Mol. Cell. Biol.* 9, 4248–58.
- 32. Levitt, N. et al. (1989) Definition of an efficient poly(A) site. Genes Dev. 3, 1019-25.

8. Related Products

RNA Interference Products

Product	Size	Cat.#
GeneClip™ U1 Hairpin Cloning System – Basic	1 system	C8750
GeneClip™ U1 Hairpin Cloning System – Puromycin	1 system	C8760
GeneClip™ U1 Hairpin Cloning System – Hygromycin	1 system	C8770
GeneClip™ U1 Hairpin Cloning System – Neomycin	1 system	C8780
GeneClip™ U1 Hairpin Cloning System – hMGFP	1 system	C8790

Firefly and Renilla Luciferase Reagents

Product	Size	Cat.#
EnduRen™ Live Cell Substrate	0.34mg	E6481
	3.4mg	E6482
	34mg	E6485
Passive Lysis 5X Buffer	30ml	E1941
Glo Lysis Buffer, 1X	100ml	E2661

 Promega Corporation
 2800
 Woods
 Hollow Road
 Madison, WI
 53711-5399
 USA

 Toll Free in USA 800-356-9526
 Phone 608-274-4330
 Fax 608-277-2516
 www.promega.com

 Part# TB329
 Printed in USA.
 Revised 6/09

(a)Patent Pending.

(b)For research use only. This product and/or its use is subject to one or more of the following Promega patents: U.S. Pat. Appln. Ser. Nos. 09/645,706, 10/943,508, 10/664,341, PCT Pat. Appln. Ser. No. PCT/US03/28939, U.S. Pat. Nos. 6,387,675 and 6,552,179, Australian Pat. No. 698424 and various corresponding patent applications and issued patents. The terms of the limited license conveyed with the purchase of this product are as follows: Researchers may use this product in their research and they may transfer derivatives to others for research use provided that at the time of transfer a copy of this label license is given to the recipients and the recipients agree to be bound by the terms and conditions of this label license. In addition, researchers must do one of the following: (1) use luminescent assay reagents purchased from Promega Corporation for all determinations of luminescence activity resulting from the research use of this product and its derivatives; or (2) contact Promega to obtain a license for the use of the product and its derivatives in conjunction with luminescent assay reagents not purchased from Promega. No reach-through payments shall be owed to Promega relating to an organization's commercialization of products that are the discoveries resulting from the research use of this product or its derivatives, provided that such products of the organization do not fall within the scope of the valid claims of any issued patents assigned or licensed to Promega, or that such commercialization would not be a violation of the terms of this label license. No other use of this product or its derivatives is authorized without the express written consent of Promega including, without limitation, Commercial Use. Commercial Use means any and all uses of this product and derivatives by a party for monetary or other consideration and may include but is not limited to use in: (1) product manufacture; and (2) to provide a service, information or data; and/or resale of the product or its derivatives, whether or not such product or derivatives are resold for use in research. With respect to such Commercial Use, or any diagnostic, therapeutic or prophylactic uses, please contact Promega for supply and licensing information. If the purchaser is not willing to accept the conditions of this limited use statement, Promega is willing to accept the return of the unopened product and provide the purchaser with a full refund. However, in the event the product is opened, then the purchaser agrees to be bound by the conditions of this limited use statement.

^(c)Licensed from University of Georgia Research Foundation, Inc., under U.S. Pat. Nos. 5,292,658, 5,418,155, Canadian Pat. No. 2,105,984 and related patents.

^(d)Certain applications of this product may require licenses from others.

(e)U.S. Pat. No. 5,670,356 has been issued to Promega Corporation for a modified luciferase technology.

⁽⁹⁾The method of recombinant expression of *Coleoptera* luciferase is covered by U.S. Pat. Nos. 5,583,024, 5,674,713 and 5,700,673. A license (from Promega for research reagent products and from The Regents of the University of California for all other fields) is needed for any commercial sale of nucleic acid contained within or derived from this product.

© 2002, 2004, 2005, 2007, 2009 Promega Corporation. All Rights Reserved.

CellTiter-Glo, Dual-Glo and Dual-Luciferase are registered trademarks of Promega Corporation. EnduRen, psiCHECK, psiLentGene, siCHECK and TransFast are trademarks of Promega Corporation.

DNASTAR is a registered trademark of DNASTAR, Inc. GenBank is a registered trademark of the U.S. Department of Health and Human Services.

Products may be covered by pending or issued patents or may have certain limitations. Please visit our Web site for more information.

All prices and specifications are subject to change without prior notice.

Product claims are subject to change. Please contact Promega Technical Services or access the Promega online catalog for the most up-to-date information on Promega products.

 Promega Corporation · 2800 Woods Hollow Road · Madison, WI 53711-5399 USA

 Toll Free in USA 800-356-9526 · Phone 608-274-4330 · Fax 608-277-2516 · www.promega.com

 Printed in USA.

 Perived 6/09